Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks
نویسندگان
چکیده
The copper paddle-wheel is the building unit of many metal organic frameworks. Because of the ability of the copper cations to attract polar molecules, copper paddle-wheels are promising for carbon dioxide adsorption and separation. They have therefore been studied extensively, both experimentally and computationally. In this work we investigate the copper-CO2 interaction in HKUST-1 and in two different cluster models of HKUST-1: monocopper Cu(formate)2 and dicopper Cu2(formate)4. We show that density functional theory methods severely underestimate the interaction energy between copper paddle-wheels and CO2, even including corrections for the dispersion forces. In contrast, a multireference wave function followed by perturbation theory to second order using the CASPT2 method correctly describes this interaction. The restricted open-shell Møller-Plesset 2 method (ROS-MP2, equivalent to (2,2) CASPT2) was also found to be adequate in describing the system and used to develop a novel force field. Our parametrization is able to predict the experimental CO2 adsorption isotherms in HKUST-1, and it is shown to be transferable to other copper paddle-wheel systems.
منابع مشابه
Synthesis and Characterization of Nano-Structure Copper Oxide From Two Different Copper (II) Metal-Organic Framework Precursors
Nano-structured copper oxides were successfully prepared through direct calcination of 1D ladderlike metal-organic framework [Cu2(btec)(2,2'-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2'-bipy = 2,2'-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)](BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4'-bipyridine). The nano-structure of the as-synthesized samples are charac...
متن کاملCarbon Dioxide Capture on Metal-organic Frameworks with Amide-decorated Pores
CO2 is the main greenhouse gas emitted from the combustion of fossil fuels and is considered a threat in the context of global warming. Carbon capture and storage (CCS) schemes embody a group of technologies for the capture of CO2 from power plants, followed by compression, transport, and permanent storage. Key advances in recent years include the further development of ne...
متن کاملSynthesis of Different Copper Oxide Nano-Structures From Direct Thermal Decomposition of Porous Copper(ΙΙ) Metal-Organic Framework Precursors
Copper oxide nanostructures have been successfully synthesized via one-step solid-state thermolysis of two metal-organic frameworks, [Cu3(btc)2] (1) and [Cu(tpa).(dmf)] (2), (btc = benzene-1,3,5-tricarboxylate, tpa = therephtalic acid = 1,4-benzendicarboxylic acid and dmf = dimethyl formamide) under air atmosphere at 400, 500, and 600°C. It has also been found that the reaction temperature pla...
متن کاملSelective and Efficient Solvent Extraction of Copper(II) Ions from Chloride Solutions by Oxime Extractants
Oxime extractants 3-tert-butyl-2-hydroxy-5-methyl benzaldehyde oxime (HL1) and 3-tert-butyl-2-hydroxy-5-methoxy benzaldehyde oxime (HL2) were synthesized and characterized by conventional spectroscopic methods. Suitable lipophilic nature of the prepared extractants allowed examining the ability of these molecules for extr...
متن کاملPorous metal-organic polyhedra: 25 A cuboctahedron constructed from 12 Cu2(CO2)4 paddle-wheel building blocks.
Construction of large molecules that are amenable to design and functionalization is of primary current interest as it represents an important step in the achievement of molecular complexity.1-8 We believe that large porous molecules serve as intriguing initial objects in this direction since the openings to their voids may be useful in regulating the selective release and binding of smaller mo...
متن کامل